短文网整理的《解决问题》说课稿(精选6篇),快来看看吧,希望对您有所帮助。
《解决问题》说课稿 篇1
我将从说课标、说教材、说建议三个方面进行解说。
第一个方面:说课标
说课标包括说课程目标和内容标准。首先说课程目标
(一)课程目标
根据学生的身心发展特点,《课程标准》把九年义务教育的学习时间划分为三个学段,二年级处于第一学段;根据对第一学段“数与代数”的学段目标的研读,下面我对本单元目标进行解读:
对本单元目标我分别从知识技能、数学思考、问题解决、情感态度四个方面进行阐述,
1.知识技能目标:结合具体情境,会分步解决两步计算的乘加(减)、除加(减)问题,掌握分步解决两步计算问题的解题思路。
2.数学思考目标 :让学生在分步解决两步计算的乘加(减)、除加(减)问题的过程中,感悟数学思考方法和解题策略。
3.问题解决目标:能结合生活实际,将生活中“旅游”素材引入数学知识中, 经历在实际情景中提出问题、解决问题的过程,并用所学知识解决生活中的问题。
4.情感态度目标:通过小组合作交流解决问题,感受数学在解决生活问题中 的作用,培养对数学学习的兴趣。
再说内容标准
(二)内容标准
在认真研读第一学段内容标准的基础上,确定了本单元的内容准标是:
分步解决两步计算的乘加(减)问题:通过本信息窗的学习,学会分步解决两步计算的乘加(减)问题,学会有条理地思考问题,掌握一些初步的解决问题的思考方法。
分步解决两步计算的除加(减)问题:通过本信息窗的学习,学会分步解决两步计算的除加(减)问题,学会有条理地思考问题,掌握一些初步的解决问题的思考方法。
第二个方面:说教材
教材中的内容是实现课程目标的重要资源,那么,它们是怎样来阐述课程理念的呢?我将从“知识与技能立体整合” “内容结构” “编写特点”“三个方面来进行研说,先来看看知识与技能立体整合
(一)知识与技能立体整合:
本套教材内容是由低年级到高年级不断拓展的螺旋式编排。本单元分步解决两步计算的实际问题是学生在掌握加、减、乘、除四种基本数量关系并解决一步计算的实际问题的基础上进行学习的,为后面解决稍复杂的实际问题打下基础。
(二)内容结构
本单元安排了两个信息窗:分步解决两步计算的乘加(减)问题、分步解决两步计算的除加(减)问题。第一个信息窗 呈现的是景区停车场停车的情境,通过问题“旅游团一共有多少人?”,学习分步解决两步计算的乘加问题;通过问题“小汽车比大汽车多几辆?”,学习分步解决两步计算的乘减问题。第二个信息窗 呈现的是在水上乐园售票处买票的情境,通过问题“买1张儿童票比买1张成人票少花多少钱?”学习分步解决两步计算的除减问题,通过问题“买1瓶果汁和1瓶矿泉水,一共需要多少钱?”,学习分步解决两步计算的除加问题。
(三)编写特点:
下面我们来说一下编写特点:
依据本单元内容,本单元教材编写具有以下两个特点:
1.题材选取具有现实性和趣味性
本单元以学生喜闻乐见的旅游活动为线索,选取了在景区停车场停车、来到水上乐园等情景中富有现实意义的、贴近学生生活经验的素材,以此为载体展开解决问题的研究。这些问题是发生在学生身边的,学生经历过的或能够接受的。现实的题材体现了学习数学的意义,有趣的题材能吸引学生去发现问题、提出问题与分析解决问题。学生通过自己解决问题,感悟数学思考方法,提高分析问题、解决问题的能力。
2.注重解决问题的一般思路和解题策略的渗透
两步计算实际问题历来是小学数学实际问题教学的重、难点之一。解决两步计算的实际问题的关键是先根据题中条件与问题之间的联系找到中间问题。分析与寻求中间问题的策略方法也是以后解决更复杂实际问题的重要基础。从这个意义上说,本单元教学是学生解决问题能力发展的重要转折点和关键点。在“你问我说”部分的.编写中明晰了分析问题、解决问题的一般过程,如信息窗1.2中呈现了用分析法和综合法分析数量关系的过程。这样有利于学生体验和感悟两步计算问题的基本结构及解决问题的一般思路,进一步积累解决问题的经验,形成基本策略。
第三个方面:说教学建议
基于我校“先学后导、互助提升”的数学教学模式,结合我校“前置性学习单”的使用,我从以下三个方面来说说我的建议。
1.引导学生经历从情境图中发现问题、提出问题的过程。
解决问题的第一步是引导学生从比较复杂的情境中抽象出有用的数学信息,发现并提出数学问题。由于学生进行了“前置性学习”,在课堂上不要浪费太多时间,让学生直接说出数学信息,提出问题,如果不能正确的找出数学信息,提出问题,教师要注意鼓励学生把发现的数学信息用自己的语言大胆地说出来,并指导学生怎样把信息分类整理,这样不仅方便发现问题、提出问题,也有助于学生更好地理解题意,为后面分析和解决问题奠定基础。
2. 引导学生经历解题思路的分析和探索过程。
教学过程中,教师要注意让学生在理解题意的基础上独立思考(这个环节在家进行前置性学习时完成),课堂上开展小组合作交流,互学补充,用自己的语言描述数量关系,分析数量关系,每个学生比较清晰地表述思考过程,寻找解题策略。通过学生展示汇报,生生互动,教师适时引领,学生解决问题的思路逐步变得有条理、有根据,对两步计算的数量关系就有了初步的认识和理解,同时也发现解决两步计算的实际问题关键是要找准先求什么,再求什么。既可以从条件想起,也可以从问题想起,也就是我们说的综合法和分析法,但不论哪种方法,都要认真审题,理解题意,通过分析已知条件和问题间的数量关系,找出中间问题(即关键问题)最后求得应用题的正确解答。
3.丰富体验,促进反思,帮助学生初步形成解决问题的基本思路
解题策略需要学生在有比较充分体验的基础上从内部感悟、生成,而不能依赖外界灌输。学生在探索解决问题的过程中,初步体会了解答两步计算问题通常要按“先求什么,再求什么”的思路进行,还体会到要确定“先求什么”也是有章可循的,既可以从条件想起,也可以从问题想起。也就是我们说的综合法和分析法,如信息窗1.2中呈现了用分析法和综合法分析数量关系的过程。在此基础上,要继续丰富学生的体验,运用刚刚获得的经验和方法尝试解决“自主练习”中的问题,并让学生完整地表达自己的思考过程,使学生清晰地感受到方法、策略的有效作用。教师还可以适时引导学生回顾反思用“综合法和分析法”两种方法,在解决两步计算问题的解答思路和方法上的相同点和不同点,从而使学生逐步清晰地认识到解决两步计算问题的关键有两点:一是从条件还是问题想起;二是弄清“先求什么,再求什么”,初步形成解决问题的基本思路。即不论哪种方法,最终回归到“先求什么,再求什么”的解题思路是不变的。
《解决问题》说课稿 篇2
说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:
1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:
1.教法:创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板
说教学过程:
一、联系实际,复习迁移
1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的`行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力
1.教学例5
(1)出示挂图:观察画面,说出题中告诉我们哪些信息?
(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?
(3)提出:你能用以前学过的方法解答?
(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8
=1.6×10 =1.25×12.8
=16(元) =16(元)
(5)激励引新
师:这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。今天我们就来学习用比例知识解答问题,引出课题,并板书:用比例解决问题
(6)探讨新知
提出问题,同桌讨论:题目中有哪两种相关联的量 ?它们成什么比例关系,为什么?根据这样的比例关系,你能列出等式吗?
(7)引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
板书:解:设李奶奶家上个月的水费是X元。板书计算过程略
(8)概括总结:象这样的题目,用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。
2.变式练习。
师:刚才我们用归一法和比例法帮李奶奶解决了水费问题,同学们真不简单,瞧!王大爷又遇到了什么问题?
(1)出示条件:王大爷家上个月的水费是19.2元,它们家上个月用了多少吨水?
(2)让学生用比例的知识解答改编后的题目。
(3)指名板演,并说一说你是怎么想的?
(4)比较一下改编后的题和例5有什么联系和区别?
例5的条件和问题改编以后,题中成正比例的关系仍没有改变,解答的方法也没有改变,只是要设需要用的水数为X吨,列出等式是:12.8∶8=19.2∶X
(5)想一想:怎样用比例解决问题?
小结:用比例解决问题,应先分析题中的数量关系,判断相关联的两种量成什么比例关系,再根据问题中的等量关系列出方程,然后解方程。
三、说巩固练习,形成技能。
1.小黑板出示:一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
① “照这样计算”就是说( )是一定的。
②( )和( )成( )比例。
③两次行驶的路程和时间的( )相等。
④根据这样的比例关系,请你列出方程。
2.教科书第60页做一做第1题:让学生直接用比例知识解答。做完后,讨论并请同学说一说:你为什么这样列式?
3.完成练习九第3题。师提醒:同一时间、同一地点的身高和影长成正比例。
四、说全课总结。
今天我们学习的是什么应用题,它的解答步骤是怎样的呢?
五、说课后延伸,深化拓展 。
一条公路全长1500米,一个工程队前3天修了600米,照这样计算,还需要多少天才能把这条公路修好?
《解决问题》说课稿 篇3
一、说教材
这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生们通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生们思维的广度。
二、说教学目标和教学重、难点
根据教材特点和学生实际我确定本节课的教学目标是:
(1)会分析较复杂的分数除法应用题数量关系。
(2)能列方程正确解答稍复杂的分数除法应用题。
(3)培养学生初步的逻辑思维能力。
教学重点是:能用方程正确解答稍复杂分数除法应用题。
教学难点是:确定单位“1”、分析数量关系。
三、说教法、学法
1.自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2.设计教法体现主体
课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。
四、说过程
1.复习铺垫(分两个内容)
现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9
让学生来说说等量关系,找一找单位“1”
合唱队有女生30人,男生比女生多1/3,女生有多少人?
意图:解决问题中关键是找出题目中关键句的等量关系,因此安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。
2.教学新知
改例题为男生比女生多1/3,女生有多少人?
(补充)男生比女生少1/3,女生有多少人?
比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,因此我们仍然可以顺着刚才的`思路,把未知的量设为X,应该说学生是不会有困难的。
例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。
《解决问题》说课稿 篇4
一、说教材
《用百分数解决问题》选自人教版《义务教育课程标准实验教科书数学(六年级上册)》。它是在求一个数比另一个数多(少)几分之几的分数应用题的基础上进行教学的,是求一个数是另一个数的百分之几的应用题的发展。通过解答一个数比另一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高解答百分数应用题的能力。
二、说教学目标及教学重难点
在反复挖掘教材的基础上,依据新课标的理念和学生已有的知识基础,我确定本节课的教学目标为:
知识目标:在解答求一个数是另一个数的百分之几的应用题的基础上,通过迁移类推使学生掌握求一个数比另一个数多(少)百分之几的应用题。
能力目标:提高学生自己分析问题解答问题的能力,发展学生的逻辑思维能力。
情感目标:激发学生的学习兴趣,做学习的主人。使学生在认真观察和积极思考中发展学生思维能力,体会到学习成功的乐趣。
依据本节课的教学目标,我确定的教学重点:理解和掌握求一个数比另一个数多(少)百分之几的应用题的解题思路和方法。
教学难点:分析应用题的数量关系,理解一个数比另一个数多(少)百分之几的含义。
三、说教法与学法
为了实现教学目标,突出重点,突破难点,在学生已有的认知水平和现有的知识储备的基础上,本节课我主要采用自主探究、合作交流和尝试教学法,突出学生的主体地位。用以前学过的一个数是另一个数的百分之几的分数应用题引入新课。通过提出问题、画出线段图、分析数量关系、找出解决问题的方法,让学生亲身体验知识形成的过程,获得基本的数学知识和技能,从而激发学生的学习兴趣,增加学生学好、用好数学的信心。
四、说教学流程
(一)、创设情境,引入新课
教师导语:“同学们,随着人类的进步、社会的发展,生态环境日益恶化”。(出示课件一)让学生通过画面感受环境恶化对人类生存造成的`影响。“现在,人们为了改善日益恶化的生态环境,做了很多的努力,植树造林就是其中之一(出示课件二),植树造林对治理沙化耕地,控制水土流失,防风固沙,增加土壤蓄水能力都有积极的作用”。“瞧!在另一个植树造林示范乡试验站,一位记者正在采访植树工人(出示课件三),教师提问:请同学们根据植树工人的介绍提出用百分数解决的问题”。
学生可能会提:
1、原计划造林是实际造林的百分之几?
2、实际造林是原计划造林的百分之几?
3、实际造林比原计划造林增加了百分之几?
4、原计划造林比实际造林少百分之几?
让学生先解决前两个问题,个别汇报后集体评订。通过这两个问题的解决,提醒学生注意单位“1”的量。
(设计意图:通过有关植树造林的情境图,了解植树造林的作用和意义,引起学生对植树造林的关心。通过前两个问题的解决,为旧知识向新知识迁移做好必要的准备。)
(二)、自主参与,新课探索。
1、让学生自主解决“实际造林比原计划造林增加了百分之几”的问题:
(1)、分析数量关系
让学生自己尝试把数量关系用线段图表示出来。然后组织学生小组合作说说你是怎样理“实际造林比原计划造林增加了百分之几”的,在全班交流后,出示课件点拔,让学生明确实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数占原计划造林公顷数的百分之几,原计划造林的公顷数是单位“1”。
(2)、确定解决问题的方法
让学生根据分析确定解决问题的方法,并列式计算出结果。再组织交流自己的方法。出示课件组织交流,教师适时点拔及板书。
(设计意图:在理解题意,弄清数量关系的基础上,放手让学生独立解题,并鼓励学生用不同的方法解,使学生体验解题策略的多样性。)
2、观察比较,引导学生思考“原计划造林比实际造林少百分之几?”
学生很可能会回答“原计划造林比实际造林少16。7%”,教师暂不作评价。启发提问:“这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?
学生列式计算后讨论:这个答案与此前的回答一样吗?为什么不一样?
通过讨论,帮助学生总结规律:问题中是谁和谁比?谁是单位“1”?使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。
(设计意图:通过猜测、比较、计算、验证,进一步认识百分数的意义和百分数应用题中的数量关系,提高分析和解决简单实际问题的能力。)
3、概括应用
教师指出:在实际生活中,人们常用“增加百分之几”“减少百分之几”“节约百分之几”……来表达增加、减少的幅度。让学生举例说说这些话的含义。
(三)、课堂练习,巩固新知
出示课件(做一做、学以致用)
(设计意图:通过练习加深理解、消化本节课的知识,并知道数学问题来源于生活,服务于生活的特点,激发学生学习数学的兴趣。)
(四)、课堂总结反思
同学们,学了这节课,你还有什么疑问吗?能谈谈你的收获吗?
(设计意图:通过交流、归纳、整理,帮助学生更灵活、更深刻地掌握所学知识,丰富自己的知识体系。)
(五)、板书设计:突出两种方法的比较,简明概括。
百分数的应用
一个乡原计划造林12公顷,实际造林14公顷。实际造林比原计划增加了百分之几?
方法一:(14—12)÷12方法二:14÷12—1
=2÷12≈1.167—1
≈0.167=0.167
=16.7%=16.7%
答:实际造林比原计划多16.7%。
谢谢指导!
《解决问题》说课稿 篇5
一、说教材
教材分析
二、说教法
启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标。
三、说教学目标:
1、 使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的.信心。
教学重点: 使学生理解并运用假设的策略解决问题。
教学难点: 当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
四、说教学程序:
教学过程:
一、导入:
1.回顾策略:昨天我们学习了解决问题的策略,回想一下,到现在为止,我们学过了哪些策略来解决问题?
板书:画图、列表、倒推、替换
2.提出课题:今天,我们继续来研究解决问题的策略。(揭题)
二、新课:
1、出示例题。全班42人去公园划船,一共租用了10条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?
提问:你准备怎样来解决这个问题?
学生独立思考交流想法。
根据学生回答板书各种假设:
假设10只都是大船
假设10只都是小船
假设5只大船,5只小船。
2、借助画图,初步感知调整策略
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。
(1)讨论画图: 如果10只都是大船,那我们可以借助以前学过的什么策略来推算出大船和小船各有多少只呢?学生回答:画图
你准备怎么来画呢?引导学生:用简明的符号来表示船和人(出示10只大船图)每只船坐几人?一共坐了多少人?
(2)研究调整:
发现矛盾引发思考: 问题1:假设10只船都是大船,从图上我们发现什么问题呢?(板书:多出8人)
追问:为什么会多出来呢?
引导学生明确:当我们把10只船都假设成大船时,也就是把一些小船看成了大船;当一只小船被看成大船时,每条船会多出2人,所以会多出8人
借助画图,研究调整:
问题2:那多出8人需要怎样调整?(板书:大船小船)
先想一想,然后再图上画一画。 集体交流:画法,上台展示并让学生说说想法
追问:你是怎么想到把4条大船调整为4条小船的呢?
[设计意图]
帮助学生调整策略:一条大船调整成一条小船会少了2人,每划去2人就相当于将一只大船替换成了一只小船。多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
3、借助列表,再次感知调整策略
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)
(1)观察书上P91页表格,发现什么?
(2)借助表格调整:
填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少了2人)
引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。
学生展示方法:
[设计意图]:引导学生:少2人,需要把一些小船调整为大船。一条小船调整为一条大船可以多做2人,所以调整为小船4条,大船6条。
4.还有其它方法吗?想一想,在小组里交流一下。
5、检验结果
想知道结果是否正确怎么办呢?你有办法检验吗?
学生口答,老师板书:65+43=42(人) 这是对什么进行检验?如果还需要对船只进行检验怎么办呢? 6+4=10(条)
6、小结策略
同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?
(板书:1.假设2.调整3.检验)
三、练习:
1.练一练第1题:
要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设) 让学生完整说一说,是怎样画图、调整,来推算出结果的)
2. 练一练第2题:
出示题目:估一估:可能会是各几块?你是怎么想的?
学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?
五、小结反思,分享收获
今天,我们学习了解决问题的策略,你有什么收获呢?
六、巩固提高
你能运用今天所学的知识解决这个问题吗?
板书: 解决问题的策略(假设)
《解决问题》说课稿 篇6
一、说教材
(一)本教学内容在教材中的地位和作用。
本节课的教学内容是近似值的实际应用,是在学习求近似值的基础上教学的,教学这部分内容,重点放在教给学生分析应用题的方法,根据实际生活情况采用“进一法”或“去尾法”取商的近似值。
(二)学情分析
本课所研究解决的数学问题,学生在以往的学习过程中,在生活的实践体悟中都曾渗及过,有一定的整理信息分析问题和解决问题的思想方法经验,在前几册的数学学习中已经有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。五年级学生已经具有一定的知识和生活经验,初步认识数学与人类生活的密切联系,了解数学的价值,激发学生学习数学的欲望。
二、说教学目标
1、知识与技能:能正确运用小数除法解决实际问题;培养学生观察问题、分析问题的能力;培养学生运用相关知识解决生活中的实际问题的能力。
2、过程与方法:采用独立思考和小组交流的方式进行教学。
3、情感、态度与价值观:通过学习,让学生感受到在解决实际问题时,要根据实际情况用“进一”法或“去尾”法取商的近似值。体会小数除法的应用价值。
三、说教学重难点
重点:能正确运用小数除法,培养观察、分析归纳问题的能力。
难点:提高学生分析归纳的能力,培养学生运用相关知识解决实际问题的能力。
四、说教法、学法
根据对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,以“创境激趣”为关键,以“解决问题”为核心,以“自主探索”为主线展开的多维合作活动。为他们提供各种机会,采用独立思考和小组交流的方式进行教学,让学生经历思维冲撞、自主探究、合作交流的活动,使学生体验探索的过程,体会“学数学的.乐趣”。
五、说教学程序:
鉴于本课教学内容设定的教学目标及学生的认知规律和实际情况,预设如下几个部分展开学习:
互动(一)在具体情况中探究理解进一法取商的近似值
课件出示教材第39页例10(1)题
学习任务:
1、找出题目中的已知条件:所求问题:(独立完成)
2、怎样列式?为什么这样列式?
3、算一算,需几个瓶子?
4、瓶子的个数是整数个,怎样取商的近似值(小组讨论)
引入进一法:(板书)(结合竖式理解进一法)
进一法定义:在解决问题时,根据实际情况,不管小数部分是多少,都往个位进一取整数。
5、举例生活中哪些实际问题需要进一法取商的近似值?
互动(二)在具体情况中探究理解去尾法取商的近似值
课件出示教材第39页例10(2)题
学习任务:
1、找出已知条件、所求问题,尝试独立列式解答
2、思考:怎样取商的近似值?(小组讨论)
引入去尾法:(板书)(结合竖式理解去尾法)
引入去尾法定义:在解决问题时,根据实际情况,不管小数部分是多少,都舍去尾数取整数。
3、举例生活中哪些实际问题需要去尾法取商的近似值?
(三)、目标检测
1、判断下面各题是用进一法还是去尾法,说明理由。
(1)国庆节五(1)班16名同学到世界之窗游玩,每3个同学一条船,需几条船?
(2)夏铭用彩纸折叠纸飞机,每5张纸折一架,34张纸可以折几架?
(3)一种圆珠笔2.5元钱一支,12元钱最多能买几支?
2、我最棒,我能解决下面各题。
(1)中心小学有378人去秋游,每辆客车限乘40人,需要几辆客车?
(2)美心蛋糕房特制一种生日蛋糕,每个需要0.32千克面粉。李师傅领了4千克面粉做蛋糕,最多可以做几个生日蛋糕?
(四)、全课小结
通过这节课的学习,你有什么收获?
(五)布置课外作业
六、说板书设计
解决问题
根据实际情况取商的近似值方法:
1、进一法:不管小数部分是多少,都向个位进一。
2、去尾法:不管小数部分是多少,都统统舍掉。
这样的板书设计明了、直观。
