最小公倍数教学设计

短文网

2025-10-10教案

短文网整理的最小公倍数教学设计(精选23篇),快来看看吧,希望对您有所帮助。

最小公倍数教学设计 篇1

教学内容:

两个数的公倍数和最小公倍数。(课本52页例题及相关习题)

教学目的:

1.结合具体情境,使学生理解公倍数和最小公倍数。

2.探索昭公倍数的方法,会利用列举,短除法等方法找出两个数的或几个数的公倍数和最小公倍数。

3.在探索昭公倍数的过程中,培养学生的分析,归纳能力,发展学生的创新精神。

教学重点:

探索找公倍数的方法

教学难点:

经历找两个数的公倍数和最小公倍数的过程。

教具准备:

多媒体幻灯片

教学过程:

一.复习导入

1.公因数.最大公因数。

同学们,前面第一单元中,我们学习了因数,倍数的有关知识,这一单元中,我们找了公因数和最小公因数,下面请大家回顾一下什么是因数,最大公因数。 2.倍数(1)说说下列数中谁是谁的倍数(指名说)

5×8=40 7×9=63(2)写出的'倍数。

2的倍数有:

3的倍数有:

(3)2的最小倍数是?3的最小倍数是?一个数最小的倍数是什么?有没有最大的倍数?(明确:一个数倍数的个数是无限的,一个数最小的倍数是他本身。)3.导入

今天我们一起来探索学习:找最小公倍数。(板书)二.探索交流.获取新知。 1.写出50以内的倍数。(1)学生自己寻找。(2)汇报结果

4的倍数有:6的倍数有:

(3)用“△”标出4的倍数,用“○”标出6的倍数。 2.找出的公倍数。

(1)这些数中既标有“△”又标有“○”得有那几个?他们是什么数?

(2)既是4的倍数,又是6的倍数,你能给她一个

名称吗?3.明确最小公倍数

在这些数中最小的是什么?可以给他一个名称吗?4.想一想:有最大公倍数吗?

5.学生试着消小结:公倍数和最小公倍数。 6.师生共同总结。

三.总结方法,实际应用。

在寻找最小公倍数使用的什么方法?(列举法)

(1)课本51页.一题。(2)课本52页二题。

四.1.求下列几组数的最小公倍数。

(1)3和6

5和10

7和14发现:

(2)2和3

5和7

3和7发现:

(3)4和5

9和8发现:2.总结规律

3.介绍短除法(18 24)

五总结收获。

今天的学习你有什么收获?

六.作业。

最小公倍数教学设计 篇2

教学内容:五年级下册P22—24内容教学目标:1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。

教学过程:

一、解决问题:

1、呈现问题:

(1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?

学生说猜想结果和想法。

(2)实践验证:

请小组拿出小长方形和画有正方形的纸,动手铺一铺。

(3)反馈交流:

A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。

(4)深入探索:

这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?

(5)反馈交流:

A板书数据:6、12、18、24……

B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的边长是6厘米,能找到比6厘米更小的边长吗?

C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。

2、揭示概念

(1)揭示:6、12、18、24……既是2的'倍数,又是3的倍数,它们是2和3的公倍数。(2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。

(3)辨析:16是2和3的公倍数吗?为什么?

二、探索方法,优化策略。

同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?

1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?

2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。

3、反馈呈现多种方法

方法一:列举法分别求6和9的倍数,再找公倍数、最小公倍数。

方法二:先找出6的倍数,再从6的倍数中找出9的倍数

方法三:先找出9的倍数,再从9的倍数中找出6的倍数

可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。

4、评价方法:

方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。

5、出示集合图。

6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。

三、综合练习,拓展提升。

1、完成练一练

2、完成练习四1——4

3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54

四、全课总结,畅谈收获。

五、解决实际问题(见小小设计师)

药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。

教学反思:

本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:

1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。

2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。

3、适度显睿智。在练习部分,教材能尊重学生的思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。

最小公倍数教学设计 篇3

教学内容:

教材第88、89页的内容及第91页练习十七的第1、2题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学重点:理解两个数的公倍数和最小公倍数的意义

教学难点:自主探索并总结找最小公倍数的方法.

教学具准备:多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

教学方法:小组合作谈话法

教学过程:

一、创设情景,生成问题:

前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

二、探索交流,解决问题

1.在数轴上标出4、6的倍数所在的点。

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2.引入公倍数。

(l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(2)观察:从4和6的倍数中你发现了什么?

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3.用集合图表示。

如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4.引人最小公倍数。

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4的倍数6的倍数

4,8,

16,20,…

12,24,

4和6的公倍数:

5.引出例1。

前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。

(1)操作探究。

学生任意选择操作方式。

①用长方形学具拼正方形。

②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?

(2)反馈并揭示意义。

①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm

②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。

③正方形边长还有可能是几?你是怎样知道的.?

④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。

思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)

⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。

三、巩固应用,内化提高

(1)画一画,说一说。

小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?

引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。

(2)完成教材第89页的“做一做”。

学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。

(3)独立完成教材第91页练习十七的第2题。

(4)完成教材第91页练习十七的第1题。

指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。

四、回顾整理、反思提升。

通过今天的学习,你有什么收获?

本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。

板书设计:

最小公倍数(一)

4的倍数:4、8、12、16、20、24、28、36……

6的倍数:6、12、18、24、30、36……

4和6的公倍数:12、24、36……

4和6的最小公倍数:12

教后反思:

优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。

不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。

最小公倍数教学设计 篇4

教学目标

知识与技能:

1、通过看微视频,能掌握公倍数、最小公倍数两个概念。

2、能理解求最小公倍数的算理,掌握求最小公倍数的方法。

过程与方法:在观看微视频过程中,初步掌握求两个数的最小公倍数的方法。

情感、态度与价值观:培养学生观察能力,独立思考能力和抽象概括的能力。

教学重点:理解公倍数、最小公倍数的概念。

教学难点:初步掌握求两个数的最小公倍数的方法。

教学准备:微视频、课件。

教学过程:

一、谈话导入。

今天,我们请来一位新老师来给大家上课。

二、新课教学

1、播放微视频。

(1)2、4的倍数有:4、8、12、16、20、24、28、36……

6的倍数有:6、12、18、24、28、32、36……

(2)你发现了什么?

(3)什么是公倍数?什么是最小公倍数?

(4)想一想,两个数有没有最大公倍数?

(5)例2:怎样求6和8的最小公倍数?(学生思考方法)你们都有什么好的.办法吗?

学生先尝试独立思考,用列举法先独立完成,完成后,在小组内交流、讨论。

微视频介绍筛选法。

(6)小组合作完成后做一做,发现规律,总结方法。

2、同学们,你们学会了吗?今天你学会了什么,主要学习了什么内容?(板书课题:最小公倍数),你学会了有关公倍数的哪些内容?

小组内交流,说一说。

汇报结果:几个数公有的倍数,叫做这几个数的公倍数;其中,公倍数中最小的一个,叫做这几个数的最小公倍数。互质关系,最小公倍数是两个数的乘积,倍数关系,最小公倍数是较大一个数。(板书)

三、课堂练习

1、填一填。

2、找一找。

3、求下列每组数的最小公倍数(口答)

4、教材练习十七第1题。

5、练习十七第7题。

6、练习十七第2题。

四、课堂小结今天你有什么收获?

五、作业

练习十七第5题。

六、板书设计

最小公倍数

几个数公有的倍数叫做它们的公倍数;公倍数中最小的一个叫做最小公倍数。

两个数成互质关系,最小公倍数是两个数的乘积,两个数成倍数关系,最小公倍数是较大一个数。

最小公倍数教学设计 篇5

一、片段一:故事引入

师:从前,在美丽的太湖边上有一个小渔村,村里住着一老一少两个渔夫。有一年,他们从4月1日起开始打鱼 ,并且每个人都给自己订了一条规矩。老渔夫说:“我连续打3天要休息一天。”年轻渔夫说:“我连续打5天要休息一天。”有一位远路的朋友想趁他们一起休息的日子去看看他们,拉拉家常,叙叙旧,同时想享受一次新鲜美味的“太湖鱼宴”。可他不知道选哪个日子去才能同时碰到他俩,你会帮他选一选吗?

学生尝试着寻找日子,有的一边想一边在纸上写,有的直接在课前发的日历纸上圈圈画画,有的在交头接耳……过了会儿,有几个学生露出了高兴的神情,但大多数学生显然还没有选出日子。

师:看来选准日子,还得讲究一些方法。老师给你们提个建议,同桌两个同学能否先分一下工,一个同学找老渔夫的休息日,另一个同学找年轻渔夫的休息日,然后再把两人找的日子合起来对照一下,这样试试?

先让学生独立思考,尝试解决,初步感受问题的挑战性,产生与他人合作的心理需求,教师再启发学生进行有序思考和分工合作,引导学生选出日子,并进行了交流。教师根据学生的回答逐步板书:

老渔夫的休息日:4、8、12、16、20、24、28

年轻渔夫的休息日:6、12、18、24、30

他们共同的休息日:12、24

其中最早的一天:12

二、片段二:探究提升

师:我们进一步来探究上面这些数中的学问。先看老渔夫的休息日,把这些数读一读,你会有一些发现吗?(学生读后相继交流)

生1:我发现这些数都是双数。

生2:我发现每两个数之间相差4。

生3:我发现后一个数比前一个数多4。

生4:我发现这些数都是4的倍数。

师:对了,这些数都是4的倍数,把他们从小到大排在一起,就有了你们刚才找到的规律。(教师把板书中的“老渔夫的休息日”擦去,改写成了“4的倍数”。)

师:我们刚才在30以内的数中,找到了这些4的倍数,现在老师要求继续找下去,30以外的数中,4的倍数还有吗?有多少个?

生5:32,36,40,44,48,…

(学生举例,教师在“4、8、12、16、20、24、28”的后面添上“32、36、…”。)

(学生用同样的方法探究了“6的倍数”。)

师:(手指着“12、24”)下面我们来研究两位渔夫共同的休息日,这些数和4与6有什么关系吗?

生6:这些数既是4的倍数,又是6的倍数。

生7:这些数是4和6共同的倍数。

生8:这些数是4和6公有的倍数。

生9:这些数是4和6的公倍数。

师:对了,4和6公有的倍数我们就把它叫做4和6的公倍数。(教师把板书中的“他们共同的休息日”擦去,改写成了“4和6的公倍数。

生9:这些数是4和6的公倍数。

师:对了,4和6公有的倍数我们就把它叫做4和6的公倍数。(教师把板书中的“他们共同的休息日”擦去,改写成了“4和6的公倍数”。)

师:刚才我们从30以内的数中找出了4和6的公倍数12、24,如果继续找下去,还能找出一些来吗?

生10:36、48、60、72…

(学生举例,教师在“12、24”的`后面添上“36、48,…”。)

师:(手指着“12”)请同学们想,这“其中最早的一天”是不是4和6的公倍数中最小的一个数呢,而在4和6的公倍数中能否找到最大的一个呢?

(通过交流,学生肯定“12”是4和6的公倍数中最小的一个,找不出最大的一个。)

师:公倍数中最小的一个,你们给它起个名字,该叫什么呢?

生:最小公倍数(好多学生几乎是脱口而出)。

(教师把“其中最早的一天”改为“4和6的最小公倍数”)

三、片段三:反思归纳

师:通过找“共同的休息日”这个活动,同学们分别求出了几组数的公倍数和最小公倍数。那么现在谁能用自己的话说一说,什么叫做公倍数?什么叫做最小公倍数?

生1:两个数公有的倍数就叫做这两个数的公倍数,其中最小的一个就叫做这两个数的最小公倍数。

生2:三个数公有的倍数就叫做这三个数的公倍数,其中最小的一个就叫做这三个数的最小公倍数。

生3:两个数、三个数都有公倍数和最小公倍数,我想四个数、五个数甚至更多的数也有吧。

(最终,在生生交流和师生的交流中,学生概括出“几个数公有的倍数就叫做这几个数的公倍数,其中最小的一个就叫做这几个数的最小公倍数”。)

师:想一想上面找“共同的休息日”的过程,说一说我们可以怎样来求几个数的最小公倍数。

生4:先找出每一个数的倍数,再找出公有的倍数。就可找出这几个数的最小公倍数了。

(学生交流各自的想法,互作补充和修改,最后在教师的引导下,逐步归纳出了方法:一找倍数:从小到大依次找出各个数的倍数;二找公有:对比各个数的倍数找出公有的倍数;三找最小:从公有的倍数中找出最小的一个。)

最小公倍数教学设计 篇6

教学内容:

最小公倍数

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

学习目标:

1、理解最小公倍数的意义

2、初步学会求两个数的最小公倍数。

学习任务:

任务一 理解最小公倍数的意义

任务二 求两个数的最小公倍数

教学过程:

一、激情导课

1、师:同学们,看今天我们要学习什么?(最小公倍数)

看到这个题目,你会想到我们以前学过的什么知识?(倍数)

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的'记住它。

二、民主导学

任务一

一、任务呈现

师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

二、自主学习

教师巡视学习情况

三、展示交流

1、师:他们可选那几日外出?(12.24)

你是怎样选出来的?根据回答板书;

妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数

爸爸的休息日:6 12 18 24 30 -----6的倍数。

共同的休息日:12 24 -----4和6的公倍数

最近的一天:12------4和6的最小公倍数

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调 4 的公倍数就是妈妈的休息日

6 的公倍数就是爸爸的休息日

4 和6的公倍数就是爸爸和妈妈的共同休息日

4、最近是哪一天? 12

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示 出示课件

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4 和6的公倍数是12、24。

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

7、89页做一做

二、那如何求最小公倍数呢?

任务二

求两个数的最小公倍数

一、任务呈现

1、求6和8的最小公倍数

2、想一想

1.你还能想出几种求法?

2.公倍数有多少个?你能找出最大的公倍数吗?

3.两个数的公倍数和最小公倍数之间有什么关系?

二、自主学习

三、展示交流

1、把不同求法板书

2、交流以上三个问题

(三)检测导结

1、目标检测

求下列每组数的最小公倍数(要求5分钟)

2和7 4和8

3和5 6和15

2、结果反馈

一次正确5分,自己改正4分,帮助改正3分,

3、反思总结 谈谈收获和不足

最小公倍数教学设计 篇7

教学内容:五年级下册P22—24内容教学目标:1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。

教学过程:

一、解决问题:

1、呈现问题:

(1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?

学生说猜想结果和想法。

(2)实践验证:

请小组拿出小长方形和画有正方形的纸,动手铺一铺。

(3)反馈交流:

A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。

(4)深入探索:

这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?

(5)反馈交流:

A板书数据:6、12、18、24……

B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的`边长是6厘米,能找到比6厘米更小的边长吗?

C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。

2、揭示概念

(1)揭示:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。

(3)辨析:16是2和3的公倍数吗?为什么?

二、探索方法,优化策略。

同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?

1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?

2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。

3、反馈呈现多种方法

方法一:列举法分别求6和9的倍数,再找公倍数、最小公倍数。

方法二:先找出6的倍数,再从6的倍数中找出9的倍数

方法三:先找出9的倍数,再从9的倍数中找出6的倍数

可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。

4、评价方法:

方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。

5、出示集合图。

6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。

三、综合练习,拓展提升。

1、完成练一练

2、完成练习四1——4

3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54

四、全课总结,畅谈收获。

五、解决实际问题(见小小设计师)

药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。

教学反思:

本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:

1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。

2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。

3、适度显睿智。在练习部分,教材能尊重学生的思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。

最小公倍数教学设计 篇8

知识目标:经历具体的操作活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数,在探究中体会数形结合的数学思想。

能力目标:在探索寻找公倍数和最小公倍数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。

情感目标:会运用公倍数,最大公倍数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。

教学重点:理解公倍数和最小公倍数的意义。

教学难点:利用公倍数、最小公倍数解决简单的实际问题。

教学准备:多媒体课件。

学具:若干张长3cm,宽2cm的长方形纸以及边长为5cm,6cm,……,15cm,16cm的正方形纸各一张。

学情分析:这部分内容是在学生掌握了倍数概念的基础上进行教学的。主要是为学习通分做准备。按照《标准》的要求,教材中要注重揭示数学与实际生活的联系。

教学过程:

一、激趣引入,探究已知

师:课前我们来做个报数游戏,看谁的反应最快。

师:请报到3的倍数的同学起立。再来一轮,报到4的倍数的同学起立。你们发现了什么?(有的同学要起立两次,因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。请起立两次的同学报数。(12、24)

师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。关于倍数的知识,你还知道什么?

生:一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

这节课我们就来进一步研究倍数。

二、创设情景,动手操作

1.出示主题图:

师:孔老师家的墙面出现了问题,谁愿意来帮工人师傅解决问题?

读题:这种墙砖长3分米,宽2分米。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?

师:同学们,你们认为解决这个问题要注意什么?

课件出示红色字体:用的墙砖都是整块,用长方形铺一个正方形。

2.合作交流,动手操作

我们根据上面的要求,请小组同学用一些长3厘米、宽2厘米的长方形,来代替瓷砖在正方形纸上,合作摆一摆,也可以画一画,或者算一算,探究正方形的边长可以是多少分米?最小是多少分米?看谁的方法多。一会我们进行展示。

(设计意图:这个材料的选择经过多次的筛选,最终还是用书上的例题,最主要是基于以下两点考虑:一是“铺地砖”这一生活情境学生有一定的生活经验,也具有一定的挑战性,能有效激发起学生的学习兴趣;二是可借助于实物模型,让学生在实践操作活动中加强思考与探索,经历知识的发生与形成过程,完成数学建模)

师:哪个小组愿意展示?

(教师根据学生实物投影展示,出示相关方法的课件)

预设:(1)我用的是计算法,长方形的长为3,宽为2,那么选用的边长得既能除开2,也能除开3。也就是既是2的倍数也是3的倍数。所以我们选用了边长为6厘米和12厘米的正方形,果然成功了,这是我们拼摆的图形。(师引导,像这样的数还有哪些?)

(2)我选用的是摆一摆的方法。我摆的是边长为5厘米、6厘米和8厘米的正方形。其中,边长为5厘米、8厘米的正方形都失败了。只有边长是6厘米的成功了。

(3)我选用的'是画一画的方法。是用小长方形去铺边长是6厘米和12厘米的正方形。因为6里面有3个2,所以就在边长为6的正方形边上,既可以画3个小长方形,也可以画2个小长方形。12也是这个道理。像这样的数还有18、24、30……

3.归纳总结

通过同学们的展示,你得出什么结论?

边长是6分米、12分米、是6的倍数的正方形都可以进行铺设。只有既是2的倍数又是3的倍数才可以满足要求。

师:那么这这些答案和长3、宽2有着怎样的关系呢?请用集合图来表示。

填完同学,结合预习的知识。自己说说每一部分表示什么?小组再交流一下。

预设:2的倍数有2,4,6,8,10,12,14…;

3的倍数有3,6,9,12,15,18,…

公倍数有6,12,18,24…

最小公倍数是6。(板书)

师小结:揭示课题:最小公倍数

4.回顾生活。

如果以后再考虑“可以选择边长是几分米的正方形?”我们可以直接?(找公倍数)

那如果解决“边长最小是几分米”呢?(找最小公倍数)

三、拓展提升、实际应用

1.基础题。

2.综合题。

3.发展题。

4.生活中的应用。

四、课题回顾,布置作业

师:同学们,这节课我们学习了什么,你有什么收获?

预设:这节课我们主要认识了公倍数和最小公倍数,掌握了求两个数的公倍数和最小公倍数的方法。

这一知识在实际生活中应用非常广泛,求解最小公倍数的方法也很多。回家搜集整理,下节课展示讲解。

最小公倍数教学设计 篇9

课时:1

教学准备:

教学目标:1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。

2、通过输理、比较,建立相关概念的关系。

3、、在游戏、应用中体验数学的趣味性。

基本教学过程:

一、一、基本练习

1、复习找因数、公因数的方法:

练习第一题。

学生填写后,说说你是怎么想的。巩固找公因数的方法。

2、复习约分的方法:

练习第二题先约分,再连线。

二、运用知识模型:

1、复习分数的意义、约分等知识的综合运用。

第3题。

让学生自己用分数表示,并交流自己的思考方法。

2、第4题。

先让学生找出分数,并说说自己的思考方法?

3、第5题。

本题开放性强,学生可以自由分割,并用分数表示。

三、思考题:

本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。

四、实践活动:

先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。

四、总结:教学反思:

内容:公倍数与最小公倍数

课时:1

教学准备:

教学目标:1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

基本教学过程:

一、一、创设活动情境,进行找倍数活动:

二、出示题目和8月份的日历:

1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。

2、把这些数写下来。

二、自主探索,总结找两个数的公倍数的方法:

1、观察这些数有什么特点?

2、再观察两人同时去少年宫的日子有什么特点?

3、师总结:揭示公倍数和最小公倍数的概念。

填一填:第48页

①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的理解。

②学生讨论交流找公倍数的基本方法。

③还有其他方法吗?(鼓励学生用其他方法找公倍数)

4、师总结:找公倍数和最小公倍数的方法

三、拓展引思:

1、第49页练一练

第一、二题

让学生独立填一填,再交流。

教学反思:

①15和5014和3512和484和7

说说你是怎么想的?学生明确找两个数公因数的'一般方法,并对找有特征数的最大公因数的特殊方法有所体验。

注意:教师出题时,数字不要太大,要注意把握难度要求。

②练一练,第42页第1题。第2题。第3题。

③第43页第4题:

让学生找出这几组数的公因数后,说说有什么发现?

④第43页第5题:

⑤数学探索:

三、总结。

分数的大小

教学目标

1、探索分数大小比较的方法,会正确比较两个分数的大小。结合具体情境引导学生用分数描述有关现象,理解通分的含义探索并掌握通分的方法。

2、进一步加深对分数意义的理解,培养学生的发散思维能力。

3、激发学生的创新乐趣,培养学生勇于思考、敢于求异的创新精神,使学生感受比较与分类、猜想与验证在解决问题中的作用,并逐步学会用此种方法处理、解决问题。

教学过程

(一)、创设情景谈话激趣

师:同学们,你们喜欢中央电视台李咏主持的什么娱乐节目?

生:非常6+1幸运52

师:今天就让幸运带给我们五年级二班每个人好吗?在幸运52的幸运擂台挑战之前要知道我们班的课堂比赛规则:

A、把我们班分成四大组,如果哪一组回答问题出色,或者回答问题积极相应加上两颗星。

B、如果哪一组不听人家的回答则倒扣一颗星。

C、最后看哪一组胜利相应进行奖励。

师:我们已经学习了分数的意义和分数的基本性质这些知识,如何运用这些知识来比较分数的大小呢?今天我们一起来研究研究。(板书:分数大小比较)

最小公倍数教学设计 篇10

教学目标:

1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3、培养学生推理、归纳、总结和概括能力。

教学重点:

学会用列举法找出两个数的最小公倍数。

教学难点:

理解公倍数、最小公倍数的意义。

教学过程:

一、以趣激疑

比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数”)

师:同学们,今天我们就一起来研究有关“公倍数”的问题。

二、创设情境,感知概念

1、两个数的公倍数和最小公倍数的概念教学

师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

全班交流,汇报。

师板书:巴依老爷的休息日:4、8、12、16、20、24、28

账房先生的休息日:6、12、18、24、30

他们八月份的共同休息日:12、24

这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

你们猜猜阿凡提会哪一天去巴依老爷家呢?

师板书:最早的共同休息日:12

师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

你还有其他的表示方式吗?(集合圈的图示方式)

谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

2、加深学生对公倍数和最小公倍数现实意义的理解。

现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

3、归纳求最小公倍数的方法。

师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

4、看书88——89页,你还有什么问题?

师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

三、解决问题,深化理解

1、互质数和倍数关系的数的最小公倍数

师出示书第90页的“做一做”,让学生独立解决,填写在书上。

观察一下这里的每一组中的两个数有什么关系?

它们的最小公倍数与这两个数有什么关系?

(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

提问:根据刚才的分析,你有没有发现什么规律?

(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

2、打电话游戏。

师:许老师家的电话号码是一个七位数,从高位到低位依次是:

(1)2和8的最小公倍数

(2)最小的质数

(3)既是6的'倍数又是6的因数

(4)5和15的最大公因数

(5)既是偶数又是质数

(6)比所有自然数的公因数多7的数

(7)2和3的最小公倍数。你能说说老师家的电话吗?

师:你是怎样知道的?

师:你们分析得多好啊!真了不起!

四、课堂小结

今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

五、作业

运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

教学反思:

一、尊重学生的数学现实,巧妙设计

新课程强调:数学学习应该是一个思维活动,而不是程序操练的过程。学生总是带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释,进行加工,从而实现对数学知识、数学思想方法的意义建构。所以,作为教师在预设数学活动时,要充分尊重学生的数学现实,不拘于教材,不照本宣科,巧妙设计,拓宽探索的空间,提高课堂教学的有效性。

本节课在教学设计中,我能够根据教学的需要,大胆地改变教材的呈现形式,调整了教材的资源,激发了学生产生学习和探究的欲望。

上课一开始,通过设计“报数”的活动,让学生体验到有些同学之所以站了两次,是因为他们的号数既是2的倍数又是3的倍数,从而在自然而然的活动参与中,使学生体会到:“两个不同的数存在着公倍数”。

接着,通过阿凡提的机智故事,引导学生在解决巴依老爷和账房先生的共同休息日的问题中,从数学的角度去观察和发现他们各自的休息日数据上的特点,从而得出巴依老爷的休息日就是4的倍数,账房先生的休息日就是6的倍数,他们两人的共同休息日就是4和6的公倍数……这样的教学设计,不像教师讲解学生接受那样直接明快,确实“费时”,但是并不“低效”。学生在这一教学过程中,从各自的已有经验出发,体验了“最小公倍数”概念的发生、形成的过程,经历了生动活泼的、主动的、富有个性的数学建构活动,获取了对数学概念的理解,而且还在思维能力、情感态度与价值观等多方面得到了进步和发展。

二、提升学生的数学现实,画龙点睛

数学学习是新知识与学生已有“数学现实”互相作用融为一体的过程,数学学习的任务就是要不断丰富和提高学生所拥有的数学现实。所以作为一名教师,课堂上不能仅仅满足于学生已有的数学现实的再现,而应设计出“点睛之笔”,用恰如其分的问题引导学生深入思考,使学生的认识科学化、深刻化,从而真正地提高课堂教学的有效性。

本节课在教学中虽然充分地展现了学生在解决“求两个数的最小公倍数”问题的不同方法和思维策略,但作为教师应该引导学生在共同的数学交流中,通过经验分享、方法交换、思维沟通等实现融合,并在比较中求同存异,实现由个性化认识向共性化知识的有效转变。面对学生众多不同的解题方法如:列举法、集合图表示法、小数翻倍法等,教师可以引导学生通过对比、讨论,对各种解题方法的优劣性重新进行认识,并在交流的过程中实现方法的有效优化。可通过展开比赛,分大组分别写出50以内4和6的倍数等活动,让学生自行发现,在相同的取值范围内,较大数的倍数比较少,较小数的倍数比较多。从而引导学生对小数翻倍法进行修正,改为大数翻倍法。大数翻倍法简便易学,便于心算,是一种比较好的求最小公倍数的方法,应通过教学活动让每个学生都切实地理解和掌握。

此外,本节课的例2在设计上存在着与例1重复、低效的弊端,应把例2的数字改为“4和8”,从而提升学生的思维层次,引导学生再次从观察数据的特点入手,找到求最小公倍数的更直接有效的方法。通过这样的修正,整节课的容量将更加丰富、更有层次性、更有思考和探究的空间。

最小公倍数教学设计 篇11

教学内容:

两个数的公倍数和最小公倍数。(课本52页例题及相关习题)

教学目的:

1.结合具体情境,使学生理解公倍数和最小公倍数。

2.探索昭公倍数的方法,会利用列举,短除法等方法找出两个数的或几个数的公倍数和最小公倍数。

3.在探索昭公倍数的过程中,培养学生的分析,归纳能力,发展学生的创新精神。

教学重点:

探索找公倍数的方法

教学难点:

经历找两个数的公倍数和最小公倍数的过程。

教具准备:

多媒体幻灯片

教学过程:

一.复习导入

1.公因数.最大公因数。

同学们,前面第一单元中,我们学习了因数,倍数的.有关知识,这一单元中,我们找了公因数和最小公因数,下面请大家回顾一下什么是因数,最大公因数。 2.倍数(1)说说下列数中谁是谁的倍数(指名说)

5×8=40 7×9=63(2)写出的倍数。

2的倍数有:

3的倍数有:

(3)2的最小倍数是?3的最小倍数是?一个数最小的倍数是什么?有没有最大的倍数?(明确:一个数倍数的个数是无限的,一个数最小的倍数是他本身。)3.导入

今天我们一起来探索学习:找最小公倍数。(板书)二.探索交流.获取新知。 1.写出50以内的倍数。(1)学生自己寻找。(2)汇报结果

4的倍数有:6的倍数有:

(3)用“△”标出4的倍数,用“○”标出6的倍数。 2.找出的公倍数。

(1)这些数中既标有“△”又标有“○”得有那几个?他们是什么数?

(2)既是4的倍数,又是6的倍数,你能给她一个

名称吗?3.明确最小公倍数

在这些数中最小的是什么?可以给他一个名称吗?4.想一想:有最大公倍数吗?

5.学生试着消小结:公倍数和最小公倍数。 6.师生共同总结。

三.总结方法,实际应用。

在寻找最小公倍数使用的什么方法?(列举法)

(1)课本51页.一题。(2)课本52页二题。

四.1.求下列几组数的最小公倍数。

(1)3和6

5和10

7和14发现:

(2)2和3

5和7

3和7发现:

(3)4和5

9和8发现:2.总结规律

3.介绍短除法(18 24)

五总结收获。

今天的学习你有什么收获?

六.作业。

最小公倍数教学设计 篇12

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

教学重点:使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

教学难点:使学生学会并理解求两个特殊数的最小公倍数的方法。

教学实录:

一、引入:

师:同学们,现在是什么季节?

生:春天。

师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。

[点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值]

二、新授

1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?

生①:解决了。

生②:没有解决,过一段时间,它们会一起回来的。

师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。

(2)学生讨论

(3)学生汇报

师:哪个小组来展示你们的研究成果?

生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。

师:这种方法形象直观,非常好,还有不同和方法吗?

生②:用数轴证明。(学生在展台演示)

师:大家认为这种方法怎么样?

生:简洁清楚。

师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?

生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。

板书:30的倍数:30 60 90 120

40的倍数:40 80 120

(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。

[点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]

2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。

学生验证

学生汇报。

生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。

师:恩,还是不行,我们发现60和90也有公倍数。

3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。

生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。

师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?

生:两个数公有的倍数就是他们的公倍数。

师:公倍数有多少个?

生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

生①:举例:2、4和5的公倍数是20。

生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

师:那你能找出最大的或最小的公倍数吗?

生:没有最大的,只有最小的。

师:为什么?

生:因为公倍数的个数是无限的,所以没有最大公倍数。

[点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]

4.[出示]找最小公倍数

4和8 5和10 6和15 6和9 4和5

让学生找出每组数的公倍数。

师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?

生:大数要是小数的倍数,大数就是它们的公倍数。

师:你们还能发现了什么?

小组讨论,之后汇报。

生①:如果大数是小数的'倍数,那么它们的乘积也是它们的公倍数。

生②:5和10的最小公倍数是10,并不是它们的乘积。

生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。

[点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]

三、总结

师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。

【设计思路】

“最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。

【评析】本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣 。

1. 结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。

2. 让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中, 教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。

最小公倍数教学设计 篇13

教学目标:

1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3、培养学生推理、归纳、总结和概括能力。

教学重点:

学会用列举法找出两个数的最小公倍数。

教学难点:

理解公倍数、最小公倍数的意义。

教学过程:

一、以趣激疑

比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数”)

师:同学们,今天我们就一起来研究有关“公倍数”的问题。

二、创设情境,感知概念

1、两个数的公倍数和最小公倍数的概念教学

师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

全班交流,汇报。

师板书:巴依老爷的休息日:4、8、12、16、20、24、28

账房先生的休息日:6、12、18、24、30

他们八月份的共同休息日:12、24

这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

你们猜猜阿凡提会哪一天去巴依老爷家呢?

师板书:最早的共同休息日:12

师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

你还有其他的表示方式吗?(集合圈的图示方式)

谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

2、加深学生对公倍数和最小公倍数现实意义的理解。

现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

3、归纳求最小公倍数的方法。

师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

4、看书88——89页,你还有什么问题?

师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

三、解决问题,深化理解

1、互质数和倍数关系的数的最小公倍数

师出示书第90页的“做一做”,让学生独立解决,填写在书上。

观察一下这里的每一组中的两个数有什么关系?

它们的最小公倍数与这两个数有什么关系?

(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

提问:根据刚才的分析,你有没有发现什么规律?

(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

2、打电话游戏。

师:许老师家的电话号码是一个七位数,从高位到低位依次是:

(1)2和8的最小公倍数

(2)最小的质数

(3)既是6的.倍数又是6的因数

(4)5和15的最大公因数

(5)既是偶数又是质数

(6)比所有自然数的公因数多7的数

(7)2和3的最小公倍数。你能说说老师家的电话吗?

师:你是怎样知道的?

师:你们分析得多好啊!真了不起!

四、课堂小结

今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

五、作业

运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

教学反思:

一、尊重学生的数学现实,巧妙设计

新课程强调:数学学习应该是一个思维活动,而不是程序操练的过程。学生总是带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释,进行加工,从而实现对数学知识、数学思想方法的意义建构。所以,作为教师在预设数学活动时,要充分尊重学生的数学现实,不拘于教材,不照本宣科,巧妙设计,拓宽探索的空间,提高课堂教学的有效性。

本节课在教学设计中,我能够根据教学的需要,大胆地改变教材的呈现形式,调整了教材的资源,激发了学生产生学习和探究的欲望。

上课一开始,通过设计“报数”的活动,让学生体验到有些同学之所以站了两次,是因为他们的号数既是2的倍数又是3的倍数,从而在自然而然的活动参与中,使学生体会到:“两个不同的数存在着公倍数”。

接着,通过阿凡提的机智故事,引导学生在解决巴依老爷和账房先生的共同休息日的问题中,从数学的角度去观察和发现他们各自的休息日数据上的特点,从而得出巴依老爷的休息日就是4的倍数,账房先生的休息日就是6的倍数,他们两人的共同休息日就是4和6的公倍数……这样的教学设计,不像教师讲解学生接受那样直接明快,确实“费时”,但是并不“低效”。学生在这一教学过程中,从各自的已有经验出发,体验了“最小公倍数”概念的发生、形成的过程,经历了生动活泼的、主动的、富有个性的数学建构活动,获取了对数学概念的理解,而且还在思维能力、情感态度与价值观等多方面得到了进步和发展。

二、提升学生的数学现实,画龙点睛

数学学习是新知识与学生已有“数学现实”互相作用融为一体的过程,数学学习的任务就是要不断丰富和提高学生所拥有的数学现实。所以作为一名教师,课堂上不能仅仅满足于学生已有的数学现实的再现,而应设计出“点睛之笔”,用恰如其分的问题引导学生深入思考,使学生的认识科学化、深刻化,从而真正地提高课堂教学的有效性。

本节课在教学中虽然充分地展现了学生在解决“求两个数的最小公倍数”问题的不同方法和思维策略,但作为教师应该引导学生在共同的数学交流中,通过经验分享、方法交换、思维沟通等实现融合,并在比较中求同存异,实现由个性化认识向共性化知识的有效转变。面对学生众多不同的解题方法如:列举法、集合图表示法、小数翻倍法等,教师可以引导学生通过对比、讨论,对各种解题方法的优劣性重新进行认识,并在交流的过程中实现方法的有效优化。可通过展开比赛,分大组分别写出50以内4和6的倍数等活动,让学生自行发现,在相同的取值范围内,较大数的倍数比较少,较小数的倍数比较多。从而引导学生对小数翻倍法进行修正,改为大数翻倍法。大数翻倍法简便易学,便于心算,是一种比较好的求最小公倍数的方法,应通过教学活动让每个学生都切实地理解和掌握。

此外,本节课的例2在设计上存在着与例1重复、低效的弊端,应把例2的数字改为“4和8”,从而提升学生的思维层次,引导学生再次从观察数据的特点入手,找到求最小公倍数的更直接有效的方法。通过这样的修正,整节课的容量将更加丰富、更有层次性、更有思考和探究的空间。

最小公倍数教学设计 篇14

知识目标:经历具体的操作活动,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数,在探究中体会数形结合的数学思想。

能力目标:在探索寻找公倍数和最小公倍数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。

情感目标:会运用公倍数,最大公倍数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。

教学重点:理解公倍数和最小公倍数的意义。

教学难点:利用公倍数、最小公倍数解决简单的实际问题。

教学准备:多媒体课件。

学具:若干张长3cm,宽2cm的长方形纸以及边长为5cm,6cm,……,15cm,16cm的正方形纸各一张。

学情分析:这部分内容是在学生掌握了倍数概念的基础上进行教学的。主要是为学习通分做准备。按照《标准》的要求,教材中要注重揭示数学与实际生活的联系。

教学过程:

一、激趣引入,探究已知

师:课前我们来做个报数游戏,看谁的反应最快。

师:请报到3的倍数的同学起立。再来一轮,报到4的倍数的同学起立。你们发现了什么?(有的同学要起立两次,因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。请起立两次的同学报数。(12.24)

师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。关于倍数的`知识,你还知道什么?

生:一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

这节课我们就来进一步研究倍数。

二、创设情景,动手操作

1.出示主题图:

师:孔老师家的墙面出现了问题,谁愿意来帮工人师傅解决问题?

读题:这种墙砖长3分米,宽2分米。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?

师:同学们,你们认为解决这个问题要注意什么?

课件出示红色字体:用的墙砖都是整块,用长方形铺一个正方形。

2.合作交流,动手操作

我们根据上面的要求,请小组同学用一些长3厘米、宽2厘米的长方形,来代替瓷砖在正方形纸上,合作摆一摆,也可以画一画,或者算一算,探究正方形的边长可以是多少分米?最小是多少分米?看谁的方法多。一会我们进行展示。

(设计意图:这个材料的选择经过多次的筛选,最终还是用书上的例题,最主要是基于以下两点考虑:一是“铺地砖”这一生活情境学生有一定的生活经验,也具有一定的挑战性,能有效激发起学生的学习兴趣;二是可借助于实物模型,让学生在实践操作活动中加强思考与探索,经历知识的发生与形成过程,完成数学建模)

师:哪个小组愿意展示?

(教师根据学生实物投影展示,出示相关方法的课件)

预设:(1)我用的是计算法,长方形的长为3,宽为2,那么选用的边长得既能除开2,也能除开3。也就是既是2的倍数也是3的倍数。所以我们选用了边长为6厘米和12厘米的正方形,果然成功了,这是我们拼摆的图形。(师引导,像这样的数还有哪些?)

(2)我选用的是摆一摆的方法。我摆的是边长为5厘米、6厘米和8厘米的正方形。其中,边长为5厘米、8厘米的正方形都失败了。只有边长是6厘米的成功了。

(3)我选用的是画一画的方法。是用小长方形去铺边长是6厘米和12厘米的正方形。因为6里面有3个2,所以就在边长为6的正方形边上,既可以画3个小长方形,也可以画2个小长方形。12也是这个道理。像这样的数还有18、24、30……

3.归纳总结

通过同学们的展示,你得出什么结论?

边长是6分米、12分米、是6的倍数的正方形都可以进行铺设。只有既是2的倍数又是3的倍数才可以满足要求。

师:那么这这些答案和长3、宽2有着怎样的关系呢?请用集合图来表示。

填完同学,结合预习的知识。自己说说每一部分表示什么?小组再交流一下。

预设:2的倍数有2,4,6,8,10,12,14…;

3的倍数有3,6,9,12,15,18,…

公倍数有6,12,18,24…

最小公倍数是6。(板书)

师小结:揭示课题:最小公倍数

4.回顾生活。

如果以后再考虑“可以选择边长是几分米的正方形?”我们可以直接?(找公倍数)

那如果解决“边长最小是几分米”呢?(找最小公倍数)

三、拓展提升、实际应用

1.基础题。

2.综合题。

3.发展题。

4.生活中的应用。

四、课题回顾,布置作业

师:同学们,这节课我们学习了什么,你有什么收获?

预设:这节课我们主要认识了公倍数和最小公倍数,掌握了求两个数的公倍数和最小公倍数的方法。

这一知识在实际生活中应用非常广泛,求解最小公倍数的方法也很多。回家搜集整理,下节课展示讲解。

最小公倍数教学设计 篇15

教学内容:

找最小公倍数

教学目标:

1、使学生理解公倍数和最小公倍数的含义。

2、使学生会利用列举法找出两个数的公倍数和最小公倍数。

3、使学生初步掌握求两个数最小公倍数的方法,培养学生学习数学的兴趣。

教学重点:

使学生掌握求两个数最小公倍数的方法。

教学难点:

运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学过程:

(一)复习导入,初步感受

1、复习

师:同学们,我们已经认识了倍数,谁能举例说几个3的倍数?生:3的倍数有3、6、9、12、15……。师:2的倍数呢?

生:2的倍数有2、4、6、8、10……。师:3和2的最小倍数都是几?生:都是他们本身。

师:那么,为什么在说倍数时要加省略号?

生:因为一个数的倍数的个数是无限的,所以要加省略号。 2、导入新课(板书课题)(二)教学新课1、出示课件教学新课

师:下面请同学们用△圈出妈妈的休息日,用○圈出爸爸的休息日(学生操作圈数)

师:妈妈的休息日有哪几天?(4,8,12,16,20,24,28)它们都是()的倍数。(4的倍数)

师:爸爸的休息日有哪几天?(6,12,18,24,30)它们都是()的倍数。(6的倍数)师:他们共同的休息日有哪几天?(12,24)它们都是()和()共同的倍数。(4和6共同的倍数)

师:谁能为4和6共同的倍数取个名字?(4和6的公倍数)师:在4和6的公倍数中,最小的一个是几?谁来给它取个名字?(12日,最小公倍数)

2、反思总结,归纳方法。

师:请同学们回顾一下,刚才我们通过找“共同休息日”的方法。谁能说说怎样求两个数的最小公倍数?

(1)先分别找出两个数的倍数;(2)再找出两个数的'公倍数;

(3)其中最小的一个就是它们的最小公倍数。

2、试一试

师:让学生顺序写出4和8的几个倍数,他们公有的倍数是哪几个?其中最小的是多少?

师:那么,有没有最大公倍数呢?(师生共同讨论)(三)练习

1、教材第68页的做一做。 2、找出下面各组数的最小公倍数

2和6 4和8 3和4 8和9

(四)总结收获

师:通过今天的学习你有什么收获?

师(小结):今天不仅很好的理解公倍数和最小公倍数的含义,还掌握了求公倍数和最小公倍数的方法。

(五)当堂检测:

练习十七的第2题、第4题。

最小公倍数教学设计 篇16

课时:1

教学准备:

教学目标:1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。

2、通过输理、比较,建立相关概念的关系。

3、、在游戏、应用中体验数学的趣味性。

基本教学过程:

一、一、基本练习

1、复习找因数、公因数的方法:

练习第一题。

学生填写后,说说你是怎么想的。巩固找公因数的方法。

2、复习约分的方法:

练习第二题先约分,再连线。

二、运用知识模型:

1、复习分数的意义、约分等知识的综合运用。

第3题。

让学生自己用分数表示,并交流自己的思考方法。

2、第4题。

先让学生找出分数,并说说自己的思考方法?

3、第5题。

本题开放性强,学生可以自由分割,并用分数表示。

三、思考题:

本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的`实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。

四、实践活动:

先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。

四、总结:教学反思:

内容:公倍数与最小公倍数

课时:1

教学准备:

教学目标:1、结合具体情境,体会公倍数和最小公倍数的应用。理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

基本教学过程:

一、一、创设活动情境,进行找倍数活动:

二、出示题目和8月份的日历:

1、谁能说一说“每隔2天去一次,每隔4天去一次”怎么理解?用不同的符号圈出两人去少年宫的日子。

2、把这些数写下来。

二、自主探索,总结找两个数的公倍数的方法:

1、观察这些数有什么特点?

2、再观察两人同时去少年宫的日子有什么特点?

3、师总结:揭示公倍数和最小公倍数的概念。

填一填:第48页

①学生尝试找6和9的公倍数和最小公倍数,并利用集合进一步加深对公倍数意义的理解。

②学生讨论交流找公倍数的基本方法。

③还有其他方法吗?(鼓励学生用其他方法找公倍数)

4、师总结:找公倍数和最小公倍数的方法

三、拓展引思:

1、第49页练一练

第一、二题

让学生独立填一填,再交流。

教学反思:

①15和5014和3512和484和7

说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。

注意:教师出题时,数字不要太大,要注意把握难度要求。

②练一练,第42页第1题。第2题。第3题。

③第43页第4题:

让学生找出这几组数的公因数后,说说有什么发现?

④第43页第5题:

⑤数学探索:

三、总结。

分数的大小

教学目标

1、探索分数大小比较的方法,会正确比较两个分数的大小。结合具体情境引导学生用分数描述有关现象,理解通分的含义探索并掌握通分的方法。

2、进一步加深对分数意义的理解,培养学生的发散思维能力。

3、激发学生的创新乐趣,培养学生勇于思考、敢于求异的创新精神,使学生感受比较与分类、猜想与验证在解决问题中的作用,并逐步学会用此种方法处理、解决问题。

教学过程

(一)、创设情景谈话激趣

师:同学们,你们喜欢中央电视台李咏主持的什么娱乐节目?

生:非常6+1幸运52

师:今天就让幸运带给我们五年级二班每个人好吗?在幸运52的幸运擂台挑战之前要知道我们班的课堂比赛规则:

A、把我们班分成四大组,如果哪一组回答问题出色,或者回答问题积极相应加上两颗星。

B、如果哪一组不听人家的回答则倒扣一颗星。

C、最后看哪一组胜利相应进行奖励。

师:我们已经学习了分数的意义和分数的基本性质这些知识,如何运用这些知识来比较分数的大小呢?今天我们一起来研究研究。(板书:分数大小比较)

最小公倍数教学设计14篇

作为一名教职工,就难以避免地要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写才好呢?下面是小编精心整理的最小公倍数教学设计,欢迎大家分享。

最小公倍数教学设计 篇17

教学内容:五年级下册P22—24内容教学目标:1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。

教学过程:

一、解决问题:

1、呈现问题:

(1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?

学生说猜想结果和想法。

(2)实践验证:

请小组拿出小长方形和画有正方形的纸,动手铺一铺。

(3)反馈交流:

A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。

(4)深入探索:

这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?

(5)反馈交流:

A板书数据:6、12、18、24……

B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的边长是6厘米,能找到比6厘米更小的边长吗?

C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。

2、揭示概念

(1)揭示:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。

(3)辨析:16是2和3的公倍数吗?为什么?

二、探索方法,优化策略。

同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?

1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?

2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。

3、反馈呈现多种方法

方法一:列举法分别求6和9的倍数,再找公倍数、最小公倍数。

方法二:先找出6的倍数,再从6的倍数中找出9的倍数

方法三:先找出9的倍数,再从9的倍数中找出6的倍数

可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。

4、评价方法:

方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。

5、出示集合图。

6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。

三、综合练习,拓展提升。

1、完成练一练

2、完成练习四1——4

3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54

四、全课总结,畅谈收获。

五、解决实际问题(见小小设计师)

药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。

教学反思:

本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的'概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:

1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。

2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。

3、适度显睿智。在练习部分,教材能尊重学生的思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。

最小公倍数教学设计 篇18

教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。

教学目标:

1、 使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

2、 使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、 使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

教学重点:认识公倍数和最小公倍数。

教学难点:掌握找到10以内两个数的公倍数和最小公倍数的方法。

教学准备:

长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

教学过程:

一、经历操作活动,认识公倍数

1、操作活动。

提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的

正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

学生独立活动后指名在实物展示台上铺一铺。

提问:通过刚才的活动,你们发现了什么?

引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每

条边各铺了几次?怎样用算式表示?

⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

2、想像延伸。

提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米

的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

4、 揭示概念。

讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的

公倍数。

说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也

是无限的,同样可以用省略号表示。

引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方

形,说明什么?为什么?

二、自主探索,用列举的方法求公倍数和最小公倍数

1、 自主探索。

提问:6和9的公倍数有哪些?其中最小的'公倍数是几?你能试着找一找吗?

学生自主活动,在小组里交流。可能的方法有:

① 依次分别写出6和9的公倍数,再找一找。

提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小

公倍数的?

② 先找出6的倍数,再从6的倍数中找出9的倍数。

③ 先找出9的倍数,再从9的倍数中找出6的倍数。

引导:②和③有什么相同的地方?哪一种方法简捷些?

2、 明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最

小公倍数。

3、 用集合图表示。

指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

4、 完成“练一练”

完成后交流:2和5的公倍数有什么特点?

三、巩固练习,加深对公倍数和最小公倍数的认识

1、 练习四第1题。

提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个

前提呢?

2、 练习四第2题。

引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

3、 练习四第3题。

集体交流时说说是怎样找的。

四、全课小结

提问:今天学习的是什么内容?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

引导:你还有什么疑问?

五、游戏活动

练习四第4题。让学生在小组里玩一玩,再想一想。

提问:涂色的方格里写的数与3和4有什么关系?

最小公倍数教学设计 篇19

教学目标:

1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3、培养学生推理、归纳、总结和概括能力。

教学重点:

学会用列举法找出两个数的最小公倍数。

教学难点:

理解公倍数、最小公倍数的意义。

教学过程:

一、以趣激疑

比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数”)

师:同学们,今天我们就一起来研究有关“公倍数”的问题。

二、创设情境,感知概念

1、两个数的公倍数和最小公倍数的概念教学

师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

全班交流,汇报。

师板书:巴依老爷的休息日:4、8、12、16、20、24、28

账房先生的休息日:6、12、18、24、30

他们八月份的共同休息日:12、24

这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

你们猜猜阿凡提会哪一天去巴依老爷家呢?

师板书:最早的共同休息日:12

师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

你还有其他的表示方式吗?(集合圈的图示方式)

谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

2、加深学生对公倍数和最小公倍数现实意义的理解。

现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

3、归纳求最小公倍数的方法。

师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的.最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

4、看书88——89页,你还有什么问题?

师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

三、解决问题,深化理解

1、互质数和倍数关系的数的最小公倍数

师出示书第90页的“做一做”,让学生独立解决,填写在书上。

观察一下这里的每一组中的两个数有什么关系?

它们的最小公倍数与这两个数有什么关系?

(提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

提问:根据刚才的分析,你有没有发现什么规律?

(当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

2、打电话游戏。

师:许老师家的电话号码是一个七位数,从高位到低位依次是:

(1)2和8的最小公倍数

(2)最小的质数

(3)既是6的倍数又是6的因数

(4)5和15的最大公因数

(5)既是偶数又是质数

(6)比所有自然数的公因数多7的数

(7)2和3的最小公倍数。你能说说老师家的电话吗?

师:你是怎样知道的?

师:你们分析得多好啊!真了不起!

四、课堂小结

今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

五、作业

运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

教学反思:

一、尊重学生的数学现实,巧妙设计

新课程强调:数学学习应该是一个思维活动,而不是程序操练的过程。学生总是带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释,进行加工,从而实现对数学知识、数学思想方法的意义建构。所以,作为教师在预设数学活动时,要充分尊重学生的数学现实,不拘于教材,不照本宣科,巧妙设计,拓宽探索的空间,提高课堂教学的有效性。

本节课在教学设计中,我能够根据教学的需要,大胆地改变教材的呈现形式,调整了教材的资源,激发了学生产生学习和探究的欲望。

上课一开始,通过设计“报数”的活动,让学生体验到有些同学之所以站了两次,是因为他们的号数既是2的倍数又是3的倍数,从而在自然而然的活动参与中,使学生体会到:“两个不同的数存在着公倍数”。

接着,通过阿凡提的机智故事,引导学生在解决巴依老爷和账房先生的共同休息日的问题中,从数学的角度去观察和发现他们各自的休息日数据上的特点,从而得出巴依老爷的休息日就是4的倍数,账房先生的休息日就是6的倍数,他们两人的共同休息日就是4和6的公倍数……这样的教学设计,不像教师讲解学生接受那样直接明快,确实“费时”,但是并不“低效”。学生在这一教学过程中,从各自的已有经验出发,体验了“最小公倍数”概念的发生、形成的过程,经历了生动活泼的、主动的、富有个性的数学建构活动,获取了对数学概念的理解,而且还在思维能力、情感态度与价值观等多方面得到了进步和发展。

二、提升学生的数学现实,画龙点睛

数学学习是新知识与学生已有“数学现实”互相作用融为一体的过程,数学学习的任务就是要不断丰富和提高学生所拥有的数学现实。所以作为一名教师,课堂上不能仅仅满足于学生已有的数学现实的再现,而应设计出“点睛之笔”,用恰如其分的问题引导学生深入思考,使学生的认识科学化、深刻化,从而真正地提高课堂教学的有效性。

本节课在教学中虽然充分地展现了学生在解决“求两个数的最小公倍数”问题的不同方法和思维策略,但作为教师应该引导学生在共同的数学交流中,通过经验分享、方法交换、思维沟通等实现融合,并在比较中求同存异,实现由个性化认识向共性化知识的有效转变。面对学生众多不同的解题方法如:列举法、集合图表示法、小数翻倍法等,教师可以引导学生通过对比、讨论,对各种解题方法的优劣性重新进行认识,并在交流的过程中实现方法的有效优化。可通过展开比赛,分大组分别写出50以内4和6的倍数等活动,让学生自行发现,在相同的取值范围内,较大数的倍数比较少,较小数的倍数比较多。从而引导学生对小数翻倍法进行修正,改为大数翻倍法。大数翻倍法简便易学,便于心算,是一种比较好的求最小公倍数的方法,应通过教学活动让每个学生都切实地理解和掌握。

此外,本节课的例2在设计上存在着与例1重复、低效的弊端,应把例2的数字改为“4和8”,从而提升学生的思维层次,引导学生再次从观察数据的特点入手,找到求最小公倍数的更直接有效的方法。通过这样的修正,整节课的容量将更加丰富、更有层次性、更有思考和探究的空间。

最小公倍数教学设计 篇20

教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。

教学目标:

1、 使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

2、 使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、 使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

教学重点:认识公倍数和最小公倍数。

教学难点:掌握找到10以内两个数的公倍数和最小公倍数的方法。

教学准备:

长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

教学过程:

一、经历操作活动,认识公倍数

1、操作活动。

提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的

正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

学生独立活动后指名在实物展示台上铺一铺。

提问:通过刚才的活动,你们发现了什么?

引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每

条边各铺了几次?怎样用算式表示?

⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

2、想像延伸。

提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米

的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

4、 揭示概念。

讲述:6、12、18、24……既是2的.倍数,又是3的倍数,它们是2和3的

公倍数。

说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也

是无限的,同样可以用省略号表示。

引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方

形,说明什么?为什么?

二、自主探索,用列举的方法求公倍数和最小公倍数

1、 自主探索。

提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

学生自主活动,在小组里交流。可能的方法有:

① 依次分别写出6和9的公倍数,再找一找。

提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小

公倍数的?

② 先找出6的倍数,再从6的倍数中找出9的倍数。

③ 先找出9的倍数,再从9的倍数中找出6的倍数。

引导:②和③有什么相同的地方?哪一种方法简捷些?

2、 明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最

小公倍数。

3、 用集合图表示。

指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

4、 完成“练一练”

完成后交流:2和5的公倍数有什么特点?

三、巩固练习,加深对公倍数和最小公倍数的认识

1、 练习四第1题。

提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个

前提呢?

2、 练习四第2题。

引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

3、 练习四第3题。

集体交流时说说是怎样找的。

四、全课小结

提问:今天学习的是什么内容?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

引导:你还有什么疑问?

五、游戏活动

练习四第4题。让学生在小组里玩一玩,再想一想。

提问:涂色的方格里写的数与3和4有什么关系?

最小公倍数教学设计 篇21

一、片段一:故事引入

师:从前,在美丽的太湖边上有一个小渔村,村里住着一老一少两个渔夫。有一年,他们从4月1日起开始打鱼 ,并且每个人都给自己订了一条规矩。老渔夫说:“我连续打3天要休息一天。”年轻渔夫说:“我连续打5天要休息一天。”有一位远路的朋友想趁他们一起休息的日子去看看他们,拉拉家常,叙叙旧,同时想享受一次新鲜美味的“太湖鱼宴”。可他不知道选哪个日子去才能同时碰到他俩,你会帮他选一选吗?

学生尝试着寻找日子,有的一边想一边在纸上写,有的直接在课前发的日历纸上圈圈画画,有的在交头接耳……过了会儿,有几个学生露出了高兴的神情,但大多数学生显然还没有选出日子。

师:看来选准日子,还得讲究一些方法。老师给你们提个建议,同桌两个同学能否先分一下工,一个同学找老渔夫的休息日,另一个同学找年轻渔夫的休息日,然后再把两人找的日子合起来对照一下,这样试试?

先让学生独立思考,尝试解决,初步感受问题的挑战性,产生与他人合作的心理需求,教师再启发学生进行有序思考和分工合作,引导学生选出日子,并进行了交流。教师根据学生的回答逐步板书:

老渔夫的休息日:4、8、12、16、20、24、28

年轻渔夫的休息日:6、12、18、24、30

他们共同的休息日:12、24

其中最早的一天:12

二、片段二:探究提升

师:我们进一步来探究上面这些数中的学问。先看老渔夫的休息日,把这些数读一读,你会有一些发现吗?(学生读后相继交流)

生1:我发现这些数都是双数。

生2:我发现每两个数之间相差4。

生3:我发现后一个数比前一个数多4。

生4:我发现这些数都是4的倍数。

师:对了,这些数都是4的倍数,把他们从小到大排在一起,就有了你们刚才找到的规律。(教师把板书中的“老渔夫的休息日”擦去,改写成了“4的倍数”。)

师:我们刚才在30以内的数中,找到了这些4的倍数,现在老师要求继续找下去,30以外的`数中,4的倍数还有吗?有多少个?

生5:32,36,40,44,48,…

(学生举例,教师在“4、8、12、16、20、24、28”的后面添上“32、36、…”。)

(学生用同样的方法探究了“6的倍数”。)

师:(手指着“12、24”)下面我们来研究两位渔夫共同的休息日,这些数和4与6有什么关系吗?

生6:这些数既是4的倍数,又是6的倍数。

生7:这些数是4和6共同的倍数。

生8:这些数是4和6公有的倍数。

生9:这些数是4和6的公倍数。

师:对了,4和6公有的倍数我们就把它叫做4和6的公倍数。(教师把板书中的“他们共同的休息日”擦去,改写成了“4和6的公倍数。

生9:这些数是4和6的公倍数。

师:对了,4和6公有的倍数我们就把它叫做4和6的公倍数。(教师把板书中的“他们共同的休息日”擦去,改写成了“4和6的公倍数”。)

师:刚才我们从30以内的数中找出了4和6的公倍数12、24,如果继续找下去,还能找出一些来吗?

生10:36、48、60、72…

(学生举例,教师在“12、24”的后面添上“36、48,…”。)

师:(手指着“12”)请同学们想,这“其中最早的一天”是不是4和6的公倍数中最小的一个数呢,而在4和6的公倍数中能否找到最大的一个呢?

(通过交流,学生肯定“12”是4和6的公倍数中最小的一个,找不出最大的一个。)

师:公倍数中最小的一个,你们给它起个名字,该叫什么呢?

生:最小公倍数(好多学生几乎是脱口而出)。

(教师把“其中最早的一天”改为“4和6的最小公倍数”)

三、片段三:反思归纳

师:通过找“共同的休息日”这个活动,同学们分别求出了几组数的公倍数和最小公倍数。那么现在谁能用自己的话说一说,什么叫做公倍数?什么叫做最小公倍数?

生1:两个数公有的倍数就叫做这两个数的公倍数,其中最小的一个就叫做这两个数的最小公倍数。

生2:三个数公有的倍数就叫做这三个数的公倍数,其中最小的一个就叫做这三个数的最小公倍数。

生3:两个数、三个数都有公倍数和最小公倍数,我想四个数、五个数甚至更多的数也有吧。

(最终,在生生交流和师生的交流中,学生概括出“几个数公有的倍数就叫做这几个数的公倍数,其中最小的一个就叫做这几个数的最小公倍数”。)

师:想一想上面找“共同的休息日”的过程,说一说我们可以怎样来求几个数的最小公倍数。

生4:先找出每一个数的倍数,再找出公有的倍数。就可找出这几个数的最小公倍数了。

(学生交流各自的想法,互作补充和修改,最后在教师的引导下,逐步归纳出了方法:一找倍数:从小到大依次找出各个数的倍数;二找公有:对比各个数的倍数找出公有的倍数;三找最小:从公有的倍数中找出最小的一个。)

最小公倍数教学设计 篇22

教学目标:

1.学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。

2.通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。

教学重点:

理解公倍数和最小公倍数的含义。

教学难点:

用不同的方法求两个数的公倍数和最小公倍数。

教学过程:

一、游戏导入

同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。

师:想一想,他们为什么站起来两次?

生:因为他们既是4的倍数也是6的倍数。

师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。

设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的`学习积极性。

二、自主探索

(一)公倍数和最小公倍数的概念

1.回忆学习方法

师:请同学们回忆,我们是怎样研究公因数的?

生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。

师:我们就用这样的方法来研究游戏中4和6的公倍数问题。

2.自主探究

学生在练习本上独立找出4和6的公倍数。

3.汇报交流

学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)

4. 小结概念,课件演示集合图。

12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。

设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。

(二)求两个数的公倍数和最小公倍数的方法。

师:请用你想到的方法找出6和8的公倍数和最小公倍数。

(1)学生独立完成,全班交流。

(2)学生交流方法有:

①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

例如:6的倍数:6,12,18,24,30,36,42,48,……

8的倍数:8,16,24,32,40,48,……

6和8公倍数:24,48,……6和8的最小公倍数:24

②用集合图表示也很清楚。

③6的倍数中有哪些是8的倍数呢?或者8的倍数中有哪些是6的倍数呢?

师:这么多方法,你喜欢哪一种?

通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?

练习:18和24 15和25

三、课堂练习:

找出下面每组数的最小公倍数,看看有什么发现?

3和6 2和8 5和6 4和9 3和9 5和10

交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

你能举个例子吗?

四、独立作业:

数学书71页2题

五、课堂小结:

师:今天学习了什么知识?你有什么收获?

生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。

找两个数公倍数和最小公倍数的方法等等。

最小公倍数教学设计 篇23

数学过程

(一)导入

上节课我们学习了两个数的公倍数和最小公倍数的意义,这节课我们继续学习有关最小公倍数的知识。

(二)教学实施

1 、出示例2 。

怎样求6 和8 的最小公倍数?

( 1 )学生先独立思考,用自己的想法试着找出6 和8 的最小公倍数。

( 2 )小组讨论,互相启发,再全班交流。

( 3 )可能出现以下几种方法:

方法一:先分别写出6 和8 各自的倍数,再从中找出公倍数和最小公倍数。

6 的倍数:6 ,12 , 18 ,24 ,30,36,42,48 …

8 的倍数:8 ,16,24,32,40,48 …

方法二:先写出8 的倍数,再从小到大圈出6 的倍数,第一个圈出的就是它们的最小公倍数。

8 的倍数:8 , 16 , 24 , 32 , 40 ,48 …

方法三:先写出6 的倍数,再看6 的倍数中哪些是8 的倍数,从中找出最小的。

方法四:从小到大写出8 的倍数,边写边判断是不是6 的倍数,第一个是6 的倍数的,就是8 和6 的最小公倍数。

2 、完成教材第90 页的“做一做”。

学生先独立完成,观察每组数有什么特点,再进行交流。

引导学生总结出求两数的最小公倍数的两种特殊情况:

( 1 )当两数成倍数关系时,较大的数就是它们的最小公倍数。

( 2 )当两数只有公因数1 时,这两个数的积就是它们的最小公倍数。

指出:像这样能够直接看出最小公倍数的,就不用再从头去找公倍数了。

3 、完成教材第91 页练习十七的第3 题。

学生先独立完成,然后说一说哪几组数属于特殊情况?

再让学生说一说这几组数的最大公因数是什么?

你能总结一下找两个数的最大公因数和最小公倍数的一般方法与特殊情况分别是什么吗?

学生先互相交流,再汇报,总结:

( 1 )如果两个数成倍数关系,那么其中的较小数就是它们的最大公因数,较大数就是它们的'最小公倍数。

( 2 )如果两个数只有公因数1 ,那么它们的最大公因数是1 ,最小公倍数是两个数的积。

( 3 )一般情况,可以先写出一个数的因数或倍数,再从中找另一个数的因数或倍数,区别是最大公因数从大到小找,最小公倍数从小到大找。

随着学生的总结汇报,老师出示下表。

4 、完成教材第91 页练习十七的第5 题。

学生独立完成,并说明理由。

5 、完成教材第91 、92 页练习十七的第4 、6 、7 、8 题。让学生先独立思考,做出解答。然后让学生汇报自己的解法,并提问:为什么是求两个数的最小公倍数?

6、完成教材第92 页练习十七的第9 题。

学有余力的学生试着完成,并说一说思考过程。

可以这样想:先从小到大写出36 的所有因数,然后从中依次观察哪两个数的最小公倍数是36 。

(四)思维训练

1、火车站是410 路和901 路汽车的始发站,410 路每隔10 分钟发一次车,901 路每隔15 分钟发一次车,这两路汽车同时在早5 : 30 同时发车后,到中午12 时10 分有多少次是同时发车的?

2 、兄弟三人同一天从家出发外出打工,老大15 天回家一次,老二20 天回家一次,老三10 天回家一次,下一次兄弟3 人同一天从家出发至少需要多少天?

3、已知a 、b 的最大公因数是12 ,最小公倍数是72 ,且a 、b 不成倍数关系。求a 、b 各是多少?

(五)课堂小结

本节课我们研究了求两个数最小公倍数的方法。一般情况下,我们可以先找出一个数的倍数,再从小到大,找出另一个数的倍数,从而找到两个数的最小公倍数。另外,还有两种特殊情况:一种是两数成倍数关系时,较大数是这两个数的最小公倍数;另一种是两数只有公因数1 时,这两个数的积就是它们的最小公倍数。我们通过本节课的学习,还对求两个数的最大公因数与最小公倍数进行了对比,并能熟练应用最小公倍数的知识解决生活中的实际问题

教学目标

1 、通过教学,使学生巩固对两个数的公倍数和最小公倍数的意义的理解,掌握求两个数最小公倍数的方法。

2 、培养学生用多种方法解决问题的能力。

3 、培养学生归纳、概括的能力。

重点难点

1 、重点:掌握掌握求两个数的最小公倍数的方法。

2 、难点:灵活选择求两个数的最小公倍数的方法。

大家都在看